组合计算

要计算组合总数,请将组合总数除以相同组合的数量。

例如,假设有四个字母:A、B、C 和 D,您想选择其中三个并想出一个组合。

排列总数为 4 x 3 x 2,即 24 种排列方式。

然而,在排列时,“ABC、ACB、BAC、BCA、CAB、CBA”这六种排列方式由于没有考虑顺序,组合起来就变成只有一种方式。

因此,排列总数 (24) 除以 6 得出 4 种组合。

唯一相同的组合是所选数字的排列,因此如果您选择 3,3! 将产生 6 种方式。

因此,从n个项目中选择r个项目的组合总数可以计算为nPrr!。

另外,由于它是 nPr = n!(n−r)!,因此它变为 nPrr! = n!(n−r)! × 1r! = n!r!(n−r)!。

组合总数的公式

nCr = nPrr!

nCr = n!r!(n−r)!

此外,从 n 个项目中选择 r 个项目与不从 n 个项目中选择剩余的 (n−r) 个项目相同。

因此,选择r项的组合总数和选择(n−r)项的组合总数相同,且nCr和nC(n−r) 相等。

nCr = nC(n−r)